Mientras realizaba un pentest interno (un ejercicio del equipo rojo básicamente), descubrí los siguientes componentes de una clave privada (para ser exactamente OpenSSLRSAPrivateCrtKey):
- módulo
- exponente público
- exponente privado
- Primer primo
- Segundo primo
- Primer exponente
- Segundo exponente
- coeficiente
¿Ahora hay una manera de reconstruir la totalidad de la clave privada con esto? ¿Y esa clave (si se reconstruye) será suficiente para descifrar el tráfico?
Para dar un mejor contexto, aquí están los valores que he podido extraer hasta ahora:
módulo = e62a3583cb27093288d04f0a329ccec23f4fce25832f9a91633ed845f31c72cc276f538a313a4dd29d71770bafa0a828e931767c8fa7839e966f9222854a800980771f4998a25acfdea4c0fbcef9171827fe813b59a24f44ec0b09e8983ac7150636cff3d527be5554d2e8266d9f4ad3704406c01c4faabb2e3692c2f449da3fff865d99586e9a54bfe602a54566f74eb0841e545e5f76408ee68bd65c086b46bd47ebfffd84d537b47c3b938b1777549294cfa2b08c7b690728af55c194aae743166a237f92ff69c85e931e4c424fe9940d55ac15cfa2830f8cec4de04dc4afa8f2b74454a35f9175970c22830d5de2038e0768abb7ca2c8f746cde79d757e3
publicExponent = 10001
privateExponent = b205bfb29a752cf5fb4033824db75f6c7b0fbd00e2c0f52ab2baaf091b8acb7800a068db204c5a592711d5e422097f4775669ea0a57409a7a5efd1f60566a435b5396de7bcb906c8750ab5818e8ab74425db0215e7b454df983ac985300976665a9216b22012477334d29460f4b51a69041279ae29b7acf46e4023afcac73c9880012ef8ea0c46f80af6e00c6ca3dd051bf8e48a70419bf2097609ef41547f0852a469dcbb360e90e16a8a7cf5b23ebdfde0ca20c69f8346fb2cac8b227168733ea30f7ca07d51b61a9f50b9b911de31676a2e5826c78094f2fd8b73611d02b3b1a9cee7bfe43cf73f8f12c47d1d31e04f7a9acc9fea829053c24f7546342021
primeP = f5da5ef5099cc70460afb65874f0981e4220d79005c3ee07ea7557be612e9890ac28c47bee93d6a556bc8205826daf1bd23c768fe47dc50f65d33b0f7c5328047b51d85dec29b7f4fcb01984966b272f37e3cd5c45cd0e2216f916c9408d0b5d468b60f9231a73c83d70dc455f1360f8a254338305930220b403053f33d24ee9
primeQ = efaa14abb77223209b416f147acec8c1805393d688864cb33c896d84eb2fa2d4859925a1a0a619799c152d2dd5ade93ab2981f784dc735e882dcac298254e1365127a2b64b31307d87edf882662dd378ee236c3d90ae5568c7eb9b2c19740027625da33b791143ce2a7dd40d2dfce0735a338b325ea028713c43a4924400a8eb
primeExponentP = 3637eb5b14bc9b734eb3517e5e83b4b86f92f8970d7e711f13c8bf0a003a9b70c456d546138e4cf6f792e905b806e2683b4c14491cc5d3d09a7f23f63d4fc5727f93c428aa6d64e1455cbcb3edcc41befb0f64f9a5771c57ce432e90418919697fa63b4396473e2379d14af28d8e238390a10a1f29fa8aac95a658e0e057d009
primeExponentQ = 750ef3adb39a32021912eab86c0b580efb28d74aafc038f24a9d2d3b00cc7191aff74f64145d4c9013665c7cc8a37b094a75f6d901d44d4655b486fa774812003fbf46401795dd0353432e60329c2b70239075abd460f2228d934c654bc156d9e5b7aaa4bfcb68fce7d031a48653bf2558675893af983668a870b98f1f5bdb25
crtCoefficient = 354ba87acadf85a7f1178011a03ca25a8c359400d2ca7cffc0391d911342bc2f424268d0e445470b306f0179c780cad52c8a011ebffae5f1269f80ab0b6d68697aa977a0a8992b887477711ecb3caf1176b9ea2c940eff41e2de6c314ca73590275d654025cd56637a0b856152ff31cf7d814d5d6b47676c78b9dc783711214c